
Land–Snow Data Assimilation Including a Moderately Coupled Initialization Method

Applied to NWP

STANLEY G. BENJAMIN,a TATIANA G. SMIRNOVA,b,a ERIC P. JAMES,b,a LIAO-FAN LIN,c,a MING HU,a

DAVID D. TURNER,a AND SIWEI HEb,a

a NOAA/Global Systems Laboratory, Boulder, Colorado
b Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado

c Cooperative Institute for Research in Atmospheres, Colorado State University, Fort Collins, Colorado

(Manuscript received 18 October 2021, in final form 2 February 2022)

ABSTRACT: Initialization methods are needed for geophysical components of Earth system prediction models. These
methods are needed from medium-range to decadal predictions and also for short-range Earth system forecasts in support
of safety (e.g., severe weather), economic (e.g., energy), and other applications. Strongly coupled land–atmosphere data
assimilation (SCDA), producing balanced initial conditions across the land–atmosphere components, has not yet been
introduced to operational numerical weather prediction (NWP) systems. Most NWP systems have evolved separate data
assimilation (DA) procedures for the atmosphere versus land/snow system components. This separated method has been
classified as a weakly coupled DA system (WCDA). In the NOAA operational short-range weather models, a moderately
coupled land–snow–atmosphere assimilation method (MCLDA) has been implemented, a step forward from WCDA
toward SCDA. The atmosphere and land (including snow) variables are both updated within the DA using the same set of
observations (aircraft, radiosonde, satellite radiances, surface, etc.). Using this assimilation method, land surface state
variables have cycled continuously for 6 years since 2015 for the 3-km NOAA HRRR model and with CONUS cycling
since 1997. Month-long experiments were conducted with and without MCLDA for both winter and summer seasons using
the 13-km Rapid Refresh model with atmosphere (50 levels), soil (9 levels), and snow (up to 2 layers if present) on the
same horizontal grid. Improvements were evident for 2-m temperature for all times of day out to 6–12 h for both seasons
but stronger in winter. Better temperature forecasts were also shown in the 1000–900-hPa layer corresponding roughly to
the boundary layer.

SIGNIFICANCE STATEMENT: Accuracy of weather models depends on accurate initial conditions for soil tempera-
ture and moisture as well as for the atmosphere itself. This paper describes a moderately coupled data assimilation method
that modifies soil conditions based on forecast error corrections indicated by atmospheric observations. This method has
been tested for a month-long period in summer and winter and shown to consistently improve short-range forecasts of 2-m
temperature and moisture. This coupled data assimilation method is used already in NOAA operational short-range models
to improve its prediction skill for clouds, convective storms, and general weather conditions.

KEYWORDS: Land surface; Boundary layer; Hydrometeorology; Snow cover; Soil moisture; Soil temperature;
Surface fluxes; Surface observations: Numerical weather prediction/forecasting: Operational forecasting:
Coupled models; Data assimilation; Land surface model

1. Introduction

Today’s numerical weather prediction (NWP) models are,
in fact, numerical Earth system weather prediction (NEWP)
models (e.g., Benjamin et al. 2019) including internal prognos-
tic treatment of land/vegetation, snow, ice, lakes, waves, and
atmospheric composition. Representation of transfers of
energy and moisture through these Earth system boundaries is
an essential component of these prediction models. Lewis
Richardson foresaw 100 years ago the importance of diabatic
and viscid processes for successful atmospheric NWP, dedicat-
ing 40% of his book on them (Richardson 1922) and 10% of
the book on processes related to surface, soil, and sea (Lynch

2006). Land surface models representing vertical transfers of
heat and moisture to better represent surface fluxes were
first introduced into climate models by the 1970s and 1980s
(Randall et al. 2019). For weather-prediction models, initial
slab models were later replaced by multilevel soil models
(e.g., Ek et al. 2003; Smirnova et al. 1997).

With significant reservoirs of heat and moisture in the top few
meters of depth in the soil, snow, and water, accurate specifica-
tion of these conditions has been recognized as critical for NWP
accuracy but difficult to accomplish (e.g., Koster et al. 2004). We
assert that available observations, including atmospheric observa-
tions, should be used as effectively as possible to correct forecast
errors in all Earth system components including near-surface
soil–snow conditions. Here, we describe an effective one-way
coupling from the atmospheric analysis increments to the land–
snow state using approximate coupled correlations, a method we
call a “moderately coupled” land data assimilation (MCLDA).
MCLDA follows other efforts on land data assimilation, but it is
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coupled within the three-dimensional atmospheric data assimila-
tion technique with all atmospheric observations including
screen-level measurements.

We describe details on the problem and possible approaches
in section 2. Next in section 3, before describing a solution, we
briefly describe an NWP system in which it is applied and tested:
the NOAA regional 3-km High-Resolution Rapid Refresh
(HRRR; Dowell et al. 2022, hereafter D22; James et al. 2022,
hereafter J22) and its parent 13-km Rapid Refresh (RAP)
modeling systems (Benjamin et al. 2016, hereafter B16).
Section 4 provides a detailed description of the coupled data
assimilation method itself, and section 5 describes the comple-
mentary snow-cover assimilation technique. Results from a set of
experiments using the RAP model–assimilation system to test
this method are presented in section 6, followed by conclusions
in section 7.

2. Motivation: The problem and the opportunity

Daytime warm biases in 2-m temperature and dry biases in
2-m dewpoint forecasts have been evident in warm season
over continental areas in hourly-updated operational weather
models despite reduction in recent years (B16; Lee et al. 2019;
Fovell and Gallagher 2020). This problem has a longer history:
a warm daytime bias over continental areas in warm season
has been singled out as an outstanding continuing issue for
many climate and weather models (e.g., Klein et al. 2006;,
Morcrette et al. 2018; Ma et al. 2018). Koster et al. (2004)
linked this problem to a soil moisture bias. Mitchell et al.
(2004) stated that the main error sources in land state forecasts
are errors in precipitation and shortwave radiation, eventually
leading to biases in soil states, as suggested earlier by Viterbo
and Beljaars (1995). As in the real world, land surface models
(LSMs) are “reservoirs” of the days-/weeks-/months-long
outcome from the modeled atmospheric processes, and as
models, these LSMs collect a longer-term signal of potential
biases in atmospheric forcing. Their evolving soil moisture and
temperature fields are the “canaries in the coal mine,” collect-
ing over time the effects of thermal/radiative and water-cycle
errors from components of the atmospheric models and there-
fore, a possible early signal of the mean errors in the model
representations of the atmospheric processes.

As precipitation analyses based on infrared and microwave
satellite data became available (e.g., Xie and Arkin (1996, 1997)
along with satellite-based cloud products, better atmospheric
forcing variables enabled stand-alone “land data assimilation
systems” (LDASs) to estimate updated values of soil moisture/
temperature, a vast improvement over climatological soil mois-
ture. A pioneering LDAS applied for North America (NLDAS)
using prescribed atmospheric forcing including precipitation,
temperature, wind, water vapor, and radiation (Mitchell et al.
2004) in a separate domain for the land. The current NOAA
Global Land Data Assimilation System (GLDAS) was updated
in March 2021 as part of GFSv16 to use an updated version of
its land surface model (Noah LSM) with updated soil parame-
ters (Xia et al. 2020, 2021). The U.S. GLDAS follows the design
of the NOAA NLDAS (Mitchell et al. 2004) in its reliance on
precipitation analyses. Satellite-based estimates of precipitation

have improved with increased availability of microwave data
[e.g., TRMM (Tropical Rainfall Measuring Mission, mission over
1997–2015; Huffman et al. 2007) and its successor IMERG (Inte-
grated Multi-satellitE Retrievals for GPM; Huffman et al. 2019)].

Meanwhile, an initial coupled DA used screen-level observa-
tions of temperature and humidity to improve soil moisture
(Mahfouf 1991), a technique still foundational for many centers
to initialize land surface fields (e.g., Giard and Bazile 2000; Bélair
and Boone 2020). Currently, operational NWP centers use some
kind of LDAS approach to update land surface fields in their
regional and global models. Table 1 provides a summary of some
of these land-assimilation techniques including that presented in
this paper. The LDAS approach is applied with coupled DA
with 2-m temperatures and satellite observations for Canada
(ECCC, Environment and Climate Change Canada; Bilodeau
et al. 2016; Carrera et al. 2019), France (Météo-France; Giard
and Bazile 2000), the U.K. Met Office (UKMO; Gomez et al.
2020), and the European Centre for Medium-Range Forecasts
(ECMWF; de Rosnay et al. 2013, 2014; Muñoz-Sabater et al.
2019; Balsamo andMahfouf 2020).

Using the nomenclature of Penny et al. (2017), the LDAS
framework utilized in these offline NWP systems is a weakly
coupled data assimilation (WCDA) framework with separate
land surface and atmospheric data analyses. An assignment of
the level of coupling by the Penny et al. nomenclature is
included for some different coupled data assimilation frame-
works in Table 1.

Satellite-based retrievals of soil moisture variables [e.g.,
Satellite Moisture and Ocean Salinity (SMOS), Soil Moisture
Active Passive (SMAP), Advanced Scatterometer (ASCAT),
Advanced Microwave Scanning Radiometer (AMSR)] have
allowed further refinement on initial soil moisture accuracy
through their assimilation in the NASA Land Information
System (LIS; Kumar et al. 2008; Santanello et al. 2019) and in
ECMWF, UKMO (Gomez et al. 2020), and Météo-France
models (e.g., Mahfouf 2010; Draper et al. 2011; Dharssi et al.
2011; de Rosnay et al. 2014; Rodriguez-Fernandez et al.
2019). Assimilation of in situ soil moisture observations has
been demonstrated by Lin and Pu (2020) in an experimental
mode. However, the in situ probe measurements are often
strongly limited in horizontal representativeness by local
variations (often subkilometer scale) of soil type and recent
convective-storm precipitation. Satellite retrievals of soil
moisture are also limited by land surface heterogeneity and
uncertainty in vertical depth of soil and vegetation contribu-
tions to satellite-based radiances. Carrera et al. (2019) sum-
marize positive results in the Canadian NWP model with joint
assimilation of screen-level temperature and moisture and
satellite-based soil moisture estimates as improved for soil
moisture (vs soil moisture observations) but also experienced
increased biases for atmospheric screen-level humidity.

A frequent cycling approach has been implemented in the
NOAA hourly updated RAP and HRRR models over North
America. It was also used earlier from 1998 to 2012 with the
NOAA Rapid Update Cycle model (RUC; Benjamin et al.
2010). In these models, accurate frequent observations related
to precipitation and cloud conditions, including assimilation
of radar reflectivity and lightning data (Weygandt et al. 2022;
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B16; D22) and cloud observations (Benjamin et al. 2021),
have allowed more accurate forward cycling (see Table 2)
to improve the accuracy of the initial and short-term surface
energy budgets. But even with these rapid high-resolution
observations with land cycling, some drift
in soil conditions can still occur due to systematic errors in
precipitation or cloud–radiation forcing, especially in
mountainous areas without complete radar data (including
over much of the western United States). A recent example
of ongoing cycling of land surface fields with 3-km modeling
(similar to HRRR) and 3-hourly atmospheric DA (not cou-
pled) was demonstrated by Koukoula et al. (2021), showing
closer agreement to NLDAS-2 soil fields than from the
GFS.

Increased sophistication has been incorporated over the
years within these WCDA/LDAS approaches. The LDAS
schemes have evolved to more accurate ensemble-based
schemes. As cited by Duerinckx et al. (2017), the advantage
of the extended Kalman filter (EKF) technique over a sim-
pler optimal interpolation (OI) approach is that it has a
more generic formulation of the gain coefficients and thus
can be extended toward new observation types (Mahfouf
et al. 2009). However, weakly coupled land and atmo-
spheric data assimilations without simultaneous increments
may lead to sudden shocks to latent and sensible heat fluxes
by abruptly changing the temperature and moisture ver-
tical gradients across the atmosphere–surface interface.
Mulholland et al. (2015) demonstrated and quantified this ini-
tialization shock from independent atmospheric and oceanic
DA. These shocks (also evident for atmospheric–land DA)
from the independent updating using disjoint information
from these different components of the Earth system are a
main disadvantage of the WCDA LDAS schemes (Penny
et al. 2017).

A strongly coupled land–atmospheric data assimilation
(SCDA) technique is possible, as demonstrated by Lin and
Pu (2020), who used a full ensemble data assimilation
method to update at least soil moisture (not temperature)
as a control variable (also in Table 1). Despite representa-
tiveness limitations for in situ soil observations mentioned
earlier, their study produced successful results and even
used a convection-allowing (4-km grid spacing) model con-
figuration. However, this SCDA method has not been
implemented yet in the operational NWP models. More-
over, further evaluation of SCDA is needed, including
assessment on if land–atmosphere SCDA might overly fit
atmospheric observations at expense of soil measurements
and not produce optimal results for nonatmospheric appli-
cations such as agriculture or hydrology.

A method presented in this study is a first step toward
implementing a SCDA technique in the NOAA NWP
regional models. It was developed out of a preexisting full
3D atmospheric analysis (including 2-m temperature and
moisture observations), using its increment to infer an anal-
ysis increment for soil conditions (and for snow, where
appropriate) rather than use a separate LDAS. It does not
include assimilation of microwave (MW) satellite-sensed
soil retrievals (e.g., SMOS, ASCAT, SMAP) and bypasses
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difficulties with estimating surface emissivity at MW frequen-
cies for a variety of land surfaces (Aires et al. 2011; Hirahara
et al. 2020). Therefore, it is an interim solution but provides a
benchmark for land DA techniques including MW data. For
reasons to be explained below, we consider this a moderately
coupled land DA (MCLDA) method, using a level of DA
coupling between weakly and strongly coupled DA methods
described by Penny et al. (2017). In weakly coupled DA
methods, only 2-m observations are assimilated from the
atmosphere in the LDAS. However, a previous observation
impact study with the RAP model including MCLDA, James
and Benjamin (2017, their Fig. 20), showed often equal impact
and sometimes even larger impact (in summer daytime) on
surface (2-m temperature and dewpoint) forecasts from
upper-level observations (especially aircraft) than from DA
of 2-m temperature/moisture observations themselves. This
means that these upper-level observations are important con-
tributors for land surface analyses.

3. Description of model framework (RAP and HRRR)
for experiments

The hourly updated NOAA 13-km RAP and 3-km HRRR
model–assimilation NWP systems provide a mesoscale envi-
ronment to apply and test a high-frequency coupled data
assimilation component. The short-range predictions from the
HRRR (covering the lower 48 contiguous United States and
Alaska at 3-km resolution) and from the RAP (covering
North America and parts of Europe and Asia at 13-km reso-
lution) are central for the NOAA NWP guidance out to 48 h
for many applications including severe weather, transporta-
tion, energy, and hydrology (D22; J22; B16). For these appli-
cations, accurately predicted evolution of the boundary layer
is essential; so much attention has been given also to accurate
prediction of land surface conditions, which is necessary, in
turn, for heat, moisture, and momentum fluxes.

a. Model

A cohesive set of subgrid-scale parameterizations (Table 3)
has been developed and evolved for HRRR and RAP, including
use of MYNN (Mellor–Yamada–Nakanishi–Niino) scheme for
its boundary and surface layers (Olson et al. 2019a,b) including
subgrid-scale cloud representation and a multispecies bulk cloud-
microphysics representation (Thompson and Eidhammer 2014).
The lowest computational level in HRRR/RAP is ∼8 m above
ground level (computational level at s = 0.999, see Table 7 in
B16). The configuration of parameterization suite is described in
more detail by D22 and B16.

A component of the RAP/HRRR model is the RUC land
surface model, a 9-layer soil–vegetation–snow model treating
heat and moisture transfer including frozen soil conditions
(Smirnova et al. 2000, 2016). The RUC LSM implements an
implicit solution of heat and moisture budgets for a thin layer
spanning the ground surface across a thin top layer in soil or
snow and the lowest layer in the atmosphere (Smirnova et al.
1997). The RUC LSM is an LSM option for the WRF
(Weather Research and Forecasting) community model
(Skamarock et al. 2019) through which it has been widely

used in many WRF applications other than the NOAA
HRRR/RAP models. RUC LSM has been evaluated in
many soil- and snow-model intercomparisons, including
ESM-SnowMIP (Krinner et al. 2018), and found to be an
effective snow model compared to other international snow
models (Menard et al. 2021) despite its intentional design
choosing simplicity where possible. Fixed and surface fields
(e.g., land use and albedo) are prescribed largely through
MODIS datasets (Smirnova et al. 2016), with real-time-
varying VIIRS-based greenness vegetation fraction, and use
of the Beijing Normal University (BNU) soil dataset (Dy
and Fung 2016). More details on the RUC LSM and its
land-use fields are provided in He et al. (2021), especially in
their Table A1.

b. Data assimilation

As short-range forecast models, the HRRR and RAP are
especially dependent on effective data assimilation and both rely
on a 1-h update frequency. The HRRR/RAP data assimilation
(DA) uses a configuration of the NOAA community Gridpoint
Statistical Interpolation (GSI; Kleist et al. 2009). The HRRR/
RAP DA design includes a hybrid ensemble/variational assimila-
tion (Hu et al. 2017) of in situ observations from rawinsonde and
aircraft as well as satellite radiances (Table 4). It also includes
unique components for 3D assimilation including 2-/10-m surface
observations (B16), radar reflectivity and lightning stroke density
observations (Weygandt et al. 2022; D22), and cloud/clear obser-
vations from satellites and surface-based ceilometers (Benjamin
et al. 2021).

For the 3-km HRRR model, the same forward atmospheric
DA is introduced from the 13-km RAP with a 1-h spinup
cycle at 3 km (see D22). For both RAP and HRRR models,
soil/snow conditions have been cycled over a multiyear period
from early 1997 (Berbery et al. 1999), improved by the
MCLDA soil/snow DA method described in this paper start-
ing in 2004. Long-cycled soil temperature/moisture fields have
been interpolated intermittently to new grids with next gener-
ations of NOAA hourly updated models to minimize LSM
spinup. Thus, the soil state in 1997 from the Rapid Update
Cycle (Berbery et al. 1999; Benjamin et al. 2004) has been
continuously evolving into the 2021 RAP and HRRR land
surface fields over the lower 48 contiguous United States
using nearest-neighbor interpolation as needed when transfer-
ring to new model grids. Cycling of different Earth system
components for RAP/HRRR models is described through
Table 2.

Surface observations (2-m temperature, dewpoint) are
incorporated directly within the full atmospheric DA for
HRRR/RAP, different from the separate LDAS design
used by other NWP models as shown in Table 1. This design
for HRRR/RAP includes a forward model for surface
observations with a correction to 2-m temperatures to
account for the elevation difference between observation
and model using local prognostic lapse rates (Benjamin
et al. 2004). Furthermore, observation-minus-background
innovations (Benjamin et al. 2010; James and Benjamin
2017) for temperature and moisture from surface

B E N J AM I N E T A L . 829JUNE 2022

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 07/19/23 05:18 PM UTC



observations are used as additional observations via
upward replication in the local boundary layer.

This overall hourly DA design in HRRR/RAP with compo-
nents assimilating clouds, precipitation, and surface observations
uniquely constrains the short-range prediction that drives the
0–1-h forcing for the land surface fields in HRRR/RAP, as

demonstrated by J22. The DA here includes a snow-cover
update component found to be effective and more effective for
the RAP assimilation/model than those for other NCEP models
(Dawson et al. 2016). Accurate fluxes are important even in the
first model time step and certainly in the first prediction hour for
the hourly updated HRRR/RAP models; more error is

TABLE 3. Model physics and data assimilation configurations for the NOAA hourly-updated HRRR (3 km) and RAP (13 km)
regional models. HRRR domains are the contiguous United States (CONUS) and Alaska (AK) domains (more detail in section 3
and in D22).

System HRRRv1/RAPv2 HRRRv2/RAPv3 HRRRv3/RAPv4 HRRRv4/RAPv5

Model WRF-ARWv3.4.11 WRF-ARWv3.61 WRF-ARWv3.8.11 WRF-ARWv3.9.11
Domain CONUS, North

America
CONUS, North

America
CONUS, North

America, Alaska
CONUS, North

America, Alaska
Initialization frequency 1 h 1 h 1 h, 3 h 1 h, 3 h
Map projection Lambert conformal

(CONUS), rotated
lat/lon (North
America)

Lambert conformal
(CONUS), rotated
lat/lon (North
America)

Lambert conformal
(CONUS), rotated
lat/lon (North
America), polar
stereographic (AK)

Lambert conformal
(CONUS), rotated
lat/lon (North
America), polar
stereographic (AK)

Atmospheric vertical
layers

51 51 51 51

Vertical coordinate Sigma, lowest
midlevel = 0.999

Sigma, lowest
midlevel = 0.999

Hybrid sigma–terrain-
following, lowest
midlevel = 0.999

Hybrid sigma–terrain-
following, lowest
midlevel = 0.999

Soil levels 9 9 9 9
Horizontal/vertical

advection
Fifth-order upwind Fifth-order upwind Fifth-order upwind Fifth-order upwind 1

IEVA (see D22)
Computational

horizontal diffusion
None Sixth order (0.25) Sixth order (0.25),

horizontal only (not
on slopes), applied
to all variables

Sixth order reduced to
0.04 for tracers,
including water
vapor and
hydrometeors, and to
0.12 for other model
variables

Run frequency Hourly Hourly Hourly, 3 h Hourly, 3 h
Forecast duration 15 h 18 h 36 h every 6 h,

otherwise 18 h
48 h every 6 h,

otherwise 18 h
Land surface, including

number of layers
RUC LSM, 9 soil

levels, 2-layer snow
(v3.51)

RUC LSM, 9 soil
levels, 2-layer snow,
reduced wilting point
(v3.61)

RUC LSM, 9 soil
levels, 2-layer snow
(v3.81)

RUC LSM, 9 soil
levels, 2-layer snow
(v3.91)

Land parameters 30′′ MODIS land use,
30′′ STATSGO soil
types, climatology
for albedo,
greenness, leaf area
index (LAI)

Same as HRRRv1 Same as HRRRv2 but
added real-time
greenness vegetation
fraction

Changed to 15′′
MODIS land use,
BNU soil type (via
WRF), MODIS
albedo

Planetary boundary and
surface layer

Mellor–Yamada–
Nakanishi–Niino
(v3.51)

Mellor–Yamada–
Nakanishi–Niino
(v3.61)

Mellor–Yamada–
Nakanishi–Niino
(v3.81)

Mellor–Yamada–
Nakanishi–-Niino
(v3.91)

Subgrid-scale (SGS)
clouds for radiation

None MYNN RH-based
(Benjamin et al.
2016, appendix B)

MYNN prognostic SGS
cloud fraction, cloud
water

MYNN removed limit
to SGS cloud water,
reduced radii

Radiation RRTMG RRTMG RRTMG RRTMG
Orographic drag None None Small-scale orographic

drag
Turbulent drag from

subgrid orography
(CONUS only)

Cloud microphysics Thompson (v3.4.1) Thompson–Eidhammer
“aerosol-aware”
(v3.6.1)

Thompson–Eidhammer
“aerosol-aware”
(v3.8)

Thompson–Eidhammer
“aerosol-aware”
(v3.8)
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introduced by requiring the model to readjust by itself. Using
an appropriate coupling of the data assimilation between land
surface and atmosphere reduces initialization shock with both
atmosphere and land–snow surface updated simultaneously.
The evolution of the HRRR/RAP models since 2014 is pro-
vided in Table 3 here for users of HRRR/RAP data including
land surface fields (see data availability statement). More
details on the evolution of HRRR/RAPmodel and data assim-
ilation are available in D22.

4. Design for moderately coupled DA for soil and
snow variables

Land surface fields of temperature (for soil and snow) and
volumetric moisture content (for soil only) are modified verti-
cally in each column based on the full 3D atmospheric analysis
increment extracted for the lowest model level. The evolution
of data assimilation for the hourly updated NOAA models
(RUC, RAP, HRRR) was to first develop a full 3D atmo-
spheric assimilation including (e.g., B16) and then add a com-
ponent to infer a soil increment (moisture and temperature).
This is different from ECMWF and UKMO, who developed
near-surface and soil LDAS capabilities separate from their
atmospheric DA. In other words, the land surface analyses of
this study as used in the NOAA HRRR and RAP models are
affected by all available atmospheric measurements (e.g.,
soundings, aircraft, satellites, and 2-m screen-level data), while
the land surface analyses in ECMWF and UKMO (and also
from Météo-France and ECCC) assimilate only 2-m screen-
level measurements and other soil-related satellite data. (We
note that these LDAS analyses from these centers do use
short-range forecasts that were previously affected by all
observations.) Snow cover and ice cover are also modified
horizontally based on satellite-based observations (entries in

Table 4). These two components comprise the land–snow data
assimilation described in this paper.

We first describe the vertical component of the moderately
coupled data assimilation technique presented in this paper.
Only in this vertical component is the atmospheric data assim-
ilation directly applied to the land/snow fields. The RAP and
HRRR use the GSI data assimilation system (Kleist et al.
2009, B16). An extension of the GSI was developed to link
the full soil/snow prognostic fields with the atmospheric prog-
nostic fields during the data assimilation procedure (appendix
A in B16).

After the atmospheric increment is calculated (hybrid varia-
tional–ensemble; Hu et al. 2017), increments for temperature
fields in the multilevel [Ts(k)] soil are then calculated using

DTs k( ) � aT k( )DTa, (1)

where DTa is the atmosphere temperature analysis increment
at the model level closest to the surface and aT(k) is the
assumed correlation ratio for temperature for the kth soil or
sea ice level, ranging from 0.6 at the top level down to 0.2 at
the fifth level at 30-cm depth (see Table 5). A value of aT(k = 1)
of 0.6 reduces the postanalysis soil–atmospheric temperature con-
trast by 60%, reducing initial flux shock (more in section 6). The
term DTs(k) is the soil temperature increment (K) at the kth soil
or sea ice level. The soil or sea ice temperature analysis incre-
ment applied in each analysis is limited to maximum value of 1.0
K and to a minimum value using

minDTs k( ) � 22:0 3 f 3 0:6, (2)

where f � 11min 1:5, max 0, T 2 283:0( )=15:0[ ]{ }
and where

T is the first model level air temperature. Values of T used in
f are bounded to 283–305 K. Below 283 K, f is set = 1.0 and
minDTs(k) = 21.2 K, and above 305 K, f is allowed to be
larger and set as 2.5, and min DTs(k) = 23 K. The larger

TABLE 4. Observational data used in the RAPv5 and HRRRv4 3-d data assimilation (updated from Table 4 in B16). RH is
relative humidity with respect to water, V refers to horizontal wind components, T is temperature, Ty is virtual temperature, ps is
surface pressure, Td is dewpoint, qy is water vapor mixing ratio, and p is pressure.

Data type Variables Frequency

Rawinsonde (including special obs) T, RH, V, z 12 h
Boundary layer (915 MHz) profiler wind V, Ty 1 h
Radar -VAD winds (WSR-88D radars) V 1 h
Radar Reflectivity, radial wind 1 h (or higher)
Lightning Stroke density rate converted to reflectivity 1 h
Aircraft V, T, qy 1 h
Surface/METAR–land V, ps, T, Td 1 h
Surface/METAR–land Ceiling/visibility 1 h
Surface/mesonet–land V, ps, T, Td 1 h
Buoy/ship V, ps 1 h
GOES atmospheric motion vectors V, p 1 h
GOES cloud-top p, T 1 h
AMSU-A/HIRS-4/MHS/GOES /IASI/ATMS/CrIS/SEVIRI Radiances 1 h (or higher)
MODIS/VIIRS fire radiative power Fire radiative power 1 h
GPS precipitable water PW 1 h
Tropical cyclone vitals (TCVitals) ps 6 h
National Ice Center snow cover Snow cover 24 h
National Ice Center ice cover Ice cover 24 h
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negative increment threshold is appropriate for nighttime condi-
tions especially in winter.

If snow cover is present in the background field and covers the
grid cell at a given grid point partially, the skin temperature and
snow temperature at the interface between the two layers in the
RUC snow model (Smirnova et al. 2016) are also modified with
the same relationship used in (1) and (2). The snow temperature
cannot be increased over 273.15 K.

Next, an analysis increment for soil volumetric water content
[Dhs(k)] is calculated during daytime only also from the atmo-
spheric analysis increment as

Dhs k( ) � ah k( )DRHa, (3)

where DRHa is the analysis increment of atmosphere relative
humidity (calculated from temperature and water vapor
mixing ratio background fields and newly analyzed fields) at the
lowest model level, hs(k) is the soil volumetric water content
limited by porosity for the given soil type (Smirnova et al. 1997,
2016) in dimensionless units (m3 m23) and defined at each kth
soil level, and ah(k) is the assumed correlation ratio for mois-
ture for the kth soil level. DRHa is limited to range from 20.15
to 0.15. Similar ensemble-based correlations were found by
Mahfouf (1991) and Lin and Pu (2018) with a different coarser
land surface models than used for HRRR and RAP (Table 6).
Application to soil moisture using MCLDA only in daytime
(since correlation expected only during an active boundary
layer) is consistent with coefficients found by Lin and Pu (2018)
for daytime versus nighttime (larger in daytime, near zero at
night, Table 6 here).

For a 9-level soil model configuration, a correlation between
the atmospheric moisture increments and the soil moisture
increments is assumed down to the top four levels (down to
10 cm) with parameters shown in Table 6. The correlation fac-
tors ah(k) have nonzero values only during daytime [cos(solar
zenith angle) . 0.3] and when there is no snow cover. A soil
moisture increment is applied only when atmospheric tempera-
ture and RH increments are of opposite sign and when the
atmospheric temperature analysis increment at a given grid
point at the lowest atmospheric level |DTa| . 0.15 K. This treat-
ment is consistent with the negative correlation between soil
moisture and near-surface temperature forecast error found by
Mahfouf (1991) and mainly in daytime by Lin and Pu (2018,
their Fig. 6) but a stricter condition (requiring opposite-sign
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TABLE 5. Estimated correlations [aT(k)] between forecast error
for soil temperature and near-surface atmospheric temperature
[Eq. (1)] as a function of the k level in the land surface model.

k
aT(k) for 9-level
soil configuration

Soil depth (cm) for
9-level

configuration

1 0.60 0
2 0.55 1
3 0.40 4
4 0.30 10
5 0.20 30
6 0 60
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atmospheric temperature/RH increments) in the technique
shown in this paper. The soil moisture analysis increment applied
in each analysis is limited to maximum value of 0.03 and to a
minimum value of20.03 m3 m23.

The soil moisture increment design in MCLDA is based on
the assumption that Bowen ratio (between sensible and latent
heat fluxes, e.g., Monteith 1973) errors related to soil moisture
errors produce opposite atmospheric errors of near-surface
temperature and moisture. A warm/dry bias in the atmospheric
near-surface forecast is often caused by or at least associated
with too-low soil moisture, and a cold/moist near-surface atmo-
spheric bias is often associated with too-high soil moisture. This
overall cross-variable daytime-only dependency used in our
method is very consistent with the cross-variable correlations
for forecast errors for 2-m temperature and 2-m humidity in
daytime. Similarly with the ensemble-based forecast error cova-
riances found by Lin and Pu (2020, their Fig. 6a) and Lin and
Pu (2018, their Figs. 6e,f), a soil moisture error was found to be
inversely correlated with near-surface atmospheric temperature
errors. A similar opposite relationship in 2-m temperature and
2-m moisture errors related to soil moisture errors was found

by Mahfouf (1991). In his Table 2, similar correlations between
soil moisture and near-surface temperature (rws,T) were found to
range from about 20.5 to 20.9. Mahfouf (1991) also found that
the atmosphere is not informative during cloudy or precipitating
periods when downward solar radiation is small and coupling
with the underlying surface is weak. This condition is roughly
similar to the requirement for opposite signs of increments for
near-surface temperature and near-surface RH in our method.

We consider the described technique as a moderately coupled
land data assimilation (MCLDA), a step forward from aWCDA
technique toward SCDA. The atmosphere and land or snow
variables are both updated within the same DA using the same
full set of atmospheric observations (Table 4). Hourly assimila-
tion of 2-m temperature and dewpoint observations within the
atmospheric DA are a critical enabler for MCLDA, but this has
been routine for the GSI-based DA for RAP and HRRR (B16,
James and Benjamin 2017).

An example of soil temperature and moisture analysis incre-
ments for daytime (1500 UTC) during 12 July 2019 using the
described MCLDA technique is shown in Fig. 1. Soil tempera-
ture increments are much more widespread than moisture

FIG. 1. Example of temperature and moisture analysis increments using MCLDA for both atmosphere and soil for the same time in hourly
13-km RAP/GSI assimilation cycle at 1500 UTC 12 Jul 2019.
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increments and are related directly to the 2-m temperature incre-
ment (diagnosed from lowest model level increment) shown on
the left in this figure. Application of MCLDA for soil (or ice or
snow) temperature increments has no dependency on time of
day while for soil moisture MCLDA is not applied at night. The
soil moisture increments shown in this example are related to the
2-m atmospheric RH increment (not exactly the lowest-level
(8 m AGL) RH used in MCLDA but very close to it) but are
constrained and are not applied without opposite signs of 2-m
temperature and 2-m RH atmospheric increments. For example,
the region along the Iowa–Illinois border has positive RH incre-
ments (Fig. 1d); however, due to MCLDA constraints, the soil
moisture does not have any moistening in this region. For both
soil temperature and soil moisture, the increment’s magnitude
decreases for deeper soil levels, consistent with the aT(k) correla-
tions for temperature shown in Table 5 and the ah(k) correla-
tions for moisture shown in Table 6.

5. Horizontal snow cover modification

The MCLDA is applied for snow-covered grid points in the
land surface conditions and for temperature only. As part of the
overall land surface updating process (assimilation in a broad
sense), changes in horizontal snow cover are also applied once
per day at 0000 UTC using daily products (valid ∼2300 UTC)
of Northern Hemispheric snow and ice cover (Table 4) pro-
vided by NOAA (U.S. National Ice Center 2008; Helfrich et al.
2007). The Interactive Multisensor Snow and Ice Mapping Sys-
tem (IMS1) data are used as part of this overall land–snow
assimilation. The IMS-Snow data are available at 4-km resolu-
tion over the entire Northern Hemisphere and based on data
from polar-orbiting and geostationary satellites.

The IMS-Snow data are interpolated to the 13-km RAP
grid or the 3-km HRRR grid, both of which have prior infor-
mation on snow cover, snow temperature, and snow water
equivalent (SWE) from the 1-h cycling of those models
including assimilation of radar and satellite-cloud data (see
section 3b). Snow building is applied at grid points when IMS-
Snow indicates snow cover present and the model background
showed none, and also when the lowest-level atmospheric
temperature is ,278 K. In this case, the snow-building algo-
rithm searches for nearby grid points (up to 62 points in each
direction) with snow, determines the mean SWE for these
nearby points, and adds this mean SWE to the grid point
without prior snow. This procedure compensates for possible
spin-up problems in the 1-h model snow precipitation or for
misplaced snow precipitation. When there are no adjacent
snow-covered points, a small amount of SWE (1 mm) is added
to the grid points that should have snow cover, enough to sur-
vive daytime heating of a few hours. For points with added
snow cover, skin temperature and soil temperature at the top
three levels are reduced, if needed, so that these temperatures
do not exceed 272 K. If the IMS-Snow data indicate that

model grid points should not have snow and requiring clear-
ing, this is only performed under the condition that the model
has shown no precipitation during the previous hour. (In this
case, the IMS-Snow data indicating that clearing is needed
may have become obsolete at that grid point over the last
hour.) The trimmed snow is relocated to adjacent grid points
with missed snow cover if they exist to preserve conservation
of water.

IMS-Snow data are also applied similarly for clearing and
building by other NWP centers (Table 2) including ECMWF
(de Rosnay et al. 2014), UKMO (Pullen et al. 2011), and both
Canadian and French NWP systems (Bélair and Boone 2020).
These NWP centers use this dataset only for revising horizontal
snow cover, part of a two-step procedure with a separate initiali-
zation for snow depth and SWE (e.g., de Rosnay et al. 2014).

A comparison of SWE fields is shown in Fig. 2 from two
experiments using the NOAA RAPv5 model with (Fig. 2a)
and without (Fig. 2b) application of the overall land–snow DA
including MCLDA and use of the IMS-Snow snow-cover mod-
ification. There are small differences over areas of the western
United States (e.g., Oregon and Nevada), with greater snow
cover in the DA simulation over many areas. A comparison is
also provided in Fig. 2c with the SWE from the NOAA
National Snow Analysis (NSA; see National Operational
Hydrologic Remote Sensing Center 2004), showing more
agreement with the MCLDA/snow-update SWE field in these
areas of small differences. The general accuracy of the snow
cover and SWE fields even in the no-MCLDA experiment is
attributable to the other data assimilation methods (clouds,
radar, etc.) used in the RAP and HRRR hourly cycles as
described in section 3b and the accuracy of physical parame-
terizations including the land surface and boundary layer
schemes as described in section 3a.

6. Experiments to assess effect of MCLDA/snow
modification

In this section, results from experiments with and without
the land–snow assimilation during two seasons are presented.

A set of Rapid Refresh assimilation–forecast experiments
in both summer and winter was conducted to test the effec-
tiveness of the MCLDA/snow data assimilation. These experi-
ments were conducted over 1-month periods for 18 July–16
August 2018 for the summer period and for 1 February–
1 March 2019 for the winter period (Table 7). The 13-km
RAPv5 (implemented at NOAA/NCEP in December 2020)
was used for all of these experiments with all other
data assimilation and modeling configurations the same (as
described in section 3) for experiments with and without the
MCLDA/snow DA. Initial conditions for these 1-month
experiments used RAPv5 conditions including evolved land
fields with MCLDA/snow DA.

These experiments were evaluated primarily with atmospheric
observations of temperature and dewpoint at 2 m (“2mT” and
“2mTd,” respectively) and rawinsondes. RMS errors were calcu-
lated for each pair of experiments (MCLDA and noMCLDA).
The figures in this paper present differences in RMS errors1 https://usicecenter.gov/Products/ImsInfo.
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between the pair of experiments and biases against these varia-
bles for both experiments. Figure 3 shows the difference in the
RMSE relative to METAR observations as a function of both
forecast length (1–24 h) and time-of-day (“valid time”), as well
as the bias in 6-h forecast over valid time, results for the summer-
time comparison. Because of the strong differences in terrain
across the continental United States, the statistical results are sep-
arated into “eastern United States” (east of 1058W) and
“western United States” areas. Figures 3a and 3b demonstrate
that the forecasts that use MCLDA have smaller RMSE values
than the forecasts where the surface properties were not updated
via the MCLDA approach; samples that are statistically signifi-
cant are indicated with black dots. The strongest impacts for
reduced summer 2mT RMSE are at 0900, 1200, and 1500 UTC
(late night to morning). This is true especially during the night-
time in the eastern United States (significant out to 6 h and even
out to 15 h for forecasts valid at 1200 UTC) and especially in

morning hours in the western United States (significant out to
24 h). Furthermore, the bias in the summer 2mT (Figs. 3c,d) are
also smaller when MCLDA is used. The warm bias for 2mT (at
6 h) is decreased at night and especially for the western United
States (Figs. 3c,d). A daytime cold bias in the eastern United
States is also decreased by MCLDA (Fig. 3c). During nighttime,
the 2mT improvement from application of MCLDA is con-
fined to the shallower boundary layer near the surface and
with some residual into the mornings hours, especially in
the western United States (Figs. 3b,d). These figures include
the initial spindown period for the first few days as the
noMCLDA cycle evolved from initial fields with MCLDA,
so are slightly muted.

The effect of MCLDA on 2mTd RMSE in summer (Fig. 4)
is positive (especially in the western United States, Fig. 4b) in
the summer and only very slightly positive in the east (Fig. 4a).
For the western United States, the 2mTd RMSE improvement

TABLE 7. RAPv5 cycled experiments for testing the moderately coupled land data assimilation (MCLDA) technique to modify
soil/snow conditions. Hourly data assimilation was performed with forecast duration out to at least 3 h and up to 24 h every 6 h.
These experiments were carried out for winter (February 2019) and summer (July–August 2018) periods as explained in text.

Expt No. Expt name Expt purpose

Application of
MCLDA to soil

and snow

Daily revision of
snow cover with

IMS Snow

1 MCLDA Control, with MCLDA and land–snow DA Yes Yes
2 NoMCLDA No MCLDA or land–snow DA No No

FIG. 2. Snow water equivalent from (a) RAPv5 control
and (b) noMCLDA experiments (Table 7) valid 16 Feb 2019
after a 16-day cycling period. (c) Also shown is the snow
water equivalent estimate for the same time from the NOAA
National Snow Analysis.
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is during the daytime and into the early evening hours (Fig. 4b).
An overall dry bias for 2mTd for 6-h RAP forecasts in the west
was slightly decreased by application of MCLDA (Fig. 4d).
Dewpoints (2mTd) are drier in the eastern United States with
MCLDA applied (Fig. 4c), which is an improvement during

the overnight hours. There are two factors involved with
the diurnal variation of the MCLDA impact}the diurnal
variation of the boundary layer itself and the MCLDA
design constraint to not allow soil moisture increments at
night.

FIG. 4. As in Fig. 3, but now for 2-m dewpoint forecast skill, again for the summer experiment period and again for
6-h forecasts.

FIG. 3. RAP 6-h forecast skill for 2-m temperature in summer experiments with and without MCLDA (Table 7). (a),(b) RMS error dif-
ferences for no-MCLDA minus MCLDA experiments. RMS errors vs METAR observations are calculated using the NOAA MATS
(Turner et al. 2020). Differences in RMS error between noMCLDA and MCLDA experiments are plotted by valid time of day (horizontal
axis) and forecast duration (vertical axis). Black dots are shown for 95% significant differences. (c),(d) Bias vs 2-m temperature observa-
tions is shown for both MCLDA and noMCLDA experiments for the same period. Panels (a) and (c) are for the eastern United States
(east of 1008W) and (b) and (d) are for the western United States. Forecasts were run out to 6 h on an hourly basis and out to 24-h duration
every third hour. For the study domain, the nighttime is approximately during 00000–1200 UTC while the daytime is during 1200–2400
UTC.

J OURNAL OF HYDROMETEOROLOGY VOLUME 23836

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 07/19/23 05:18 PM UTC



An evaluation of summer temperature forecasts, using
RMSE differences between the two forecast configurations as
a function of both height and lead time, was also made against
rawinsonde data (Fig. 5) to inspect the depth of MCLDA

impact. Since rawinsonde data are available only twice daily,
plots in Fig. 5 are shown with the x axis reflecting lead time
(initial time also shown) for forecasts valid at 0000 UTC only
(Fig. 5a), 1200 UTC only (Fig. 5b), and 0000 and 1200 UTC
combined (Fig. 5c). A slight improvement is shown for
approximately the 1000–800-hPa layer especially for forecasts
valid at 0000 UTC (Fig. 8a, daytime) that are initialized at
0900–1800 UTC (i.e., those with a lead time of 6–15 h). This
suggests that improvement in soil conditions in summer in the
lower troposphere from MCLDA had the most important
effect during the morning period with growth of the planetary
boundary layer (PBL). This is consistent with the timing of
maximum improvement of 2mT and 2mTd predictions in the
western United States (Figs. 3b and 4b).

A similar analysis to evaluate the impact of the MCLDA
and snow modifications (henceforth we will use “MCLDA”

for both) was performed for the winter period (Fig. 6). For
the winter experiment period for 2mT, the impact from
MCLDA was also uniformly positive at all times of day and
for 1–24 h, with the magnitudes of the reduction in RMSE
even larger than for the summer period. In winter, improve-
ment (reduction in RMS error versus METARs) from
MCLDA for 2mT prediction (Fig. 6a) was as large as 0.12K
(larger than in summer), significant at 1–3 h at all times of
day, and significant out to 9–12 h at 1200–1500 UTC in the
eastern United States (Fig. 6a) and out to 3–5 h in the western
United States (Fig. 6b). The reduction in 2mT RMSE from
MCLDA was matched by a notable decrease in 2mT bias
from MCLDA at all times of day, especially in the eastern
United States (Figs. 6a,c). The eastern United States reduced
2-m cold bias in winter from MCLDA is fairly strong (by
0.28–0.48C, Fig. 6c), significant or almost so at all times of day.

For 2mTd in winter (Fig. 7), 2mTd forecast improvement
from MCLDA was very evident and focused sharply during
afternoon-to-evening hours (1800–0000 UTC) for both east-

FIG. 5. Forecast skill difference for temperature vs rawinsondes
between the same two experiments for the summer period as
described in Fig. 3 and Table 7. The vertical axis shows the pressure
level, and horizontal axis shows forecast duration or lead time.
Initial time for 3-h, 6-h, etc. forecasts valid at (for example) 0000
UTC are also shown (2100 UTC, 1800 UTC, etc.). The valid time is
fixed (0000, 1200 UTC) in each graphic. Graphics are shown for
forecasts (a) valid at both 0000 and 1200 UTC, (b) valid at 0000
UTC only, and (c) valid at 1200 UTC only.

FIG. 6. As in Fig. 3, but for forecast skill against 2-m temperature but for 4-week winter experiments during February 2019, again with
noMCLDA and MCLDA experiments.
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ern (Fig. 7a) and western United States (Fig. 7b), significant
out to 3-h forecasts for these times. This behavior, especially
for winter, is considered to be related to the diurnal variation
of the boundary layer depth. The moist bias in eastern United
States was also improved by 0.28–0.38C in the daytime hours
(Fig. 7c). Little change in winter in 2mTd bias (Figs. 7c,d)
fromMCLDA was evident.

A positive effect from MCLDA for temperature in the
lower troposphere (1000–850 hPa) was stronger in winter
(Fig. 8) than in summer (Fig. 5), similar to the larger effect

on 2mT in winter (Fig. 6) than summer (Fig. 4). Breaking
out by valid time (00000 UTC, Fig. 8a; 12000 UTC, Fig. 8b)
shows that the most pronounced positive effect from MCLDA
is at 0000 UTC (Fig. 8a) from forecasts initialized 6–18 h
prior (1800–0600 UTC). For 1200 UTC valid time, the
impact from MCLDA is smaller and is mostly from forecasts
with 1–6-h lead time (i.e., initialized overnight at 1100–0600
UTC).

Overall, a positive effect of theMCLDA soil/snow assimilation
on temperature predictions was most evident, at least statistically,
under more stable conditions, which are more common in winter,
during the night, and in the early morning hours during summer.
The effect of MCLDA is cumulative within the forward RAP
data assimilation cycle, of course. The effect of presumably more
accurate sensible flux from MCLDA is more focused in a shal-
lower boundary layer at night and in winter but is apparently
more diffused in the daytime deeper boundary layer, especially
during afternoon in summer. For moisture, the largest impact is
for forecasts valid during the afternoon hours with the strongest
land–atmosphere coupling.

Figure 9 shows the hourly variation of 6-h forecast skill
for 2mT and 2mTd with and without the land–snow DA for
a 1-week period during the winter. Generally, 2mT RMS
errors in eastern United States are reduced at all times of
day by MCLDA (Fig. 9a, red), while improvements to
2mTd errors (also in Fig. 9a, blue) are most evident in day-
time when the errors are the highest in their diurnal cycle.
This pattern of 2mTd RMS errors justifies the design of
MCLDA when soil moisture is adjusted only during the
daytime hours when its impact on the surface layer moisture
is the largest. For this winter period, the cold (2mT) and
moist (2mTd) biases (both in Fig. 9b) are both reduced by
the land–snow DA including MCLDA. The 2 m cold bias
for 2mT was reduced by MCLDA over all times of day for
this period.

FIG. 7. As in Fig. 4, for 6-h forecast skill for 2-m dewpoint but for winter experiments.

FIG. 8. As in Fig. 5, but for winter experiments.
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The vertical lines in Fig. 9 correspond to the same date for
a specific analysis increment comparison shown in Fig. 10 and
for the snow-cover state in Fig. 2. For this time, the improve-
ment from MCLDA in both RMS error and bias in 2mT in
Fig. 9 are quite substantial while neutral for 2mTd. Although
the snow cover patterns are very similar in eastern United
States for this day (Fig. 2), the soil moisture and temperature at
1-cm depth (Figs. 10c,d) show large differences over eastern
United States after two weeks of cycling with and without
MCLDA starting with the same initial conditions. There are
many regions where the soil temperature is markedly (2–4 K)
colder when MCLDA is not used (e.g., Florida, Missouri, West
Virginia, and Michigan), and in these areas the soil is also
0.10–0.12 m3 m23 moister without MCLDA; this is consistent
with 2mT and 2mTd RMS errors and biases shown in Fig. 9. A
comparison of analysis increments for 2mT for the same time is
shown in Fig. 11, with MCLDA (Fig. 11a) and without
MCLDA (Fig. 11b). Both analysis increments are positive over
the eastern United States as the assimilation warms up the too-
cold 1-h forecast, but the analysis increment is larger without
MCLDA (Fig. 11b).

We also made careful comparisons of latent and sensible heat
fluxes for a midday time (1800 UTC) for MCLDA and
noMCLDA experiments from 15 August 2018 during the

summer test period. Our goal was to investigate for any
“shocks” in fluxes from imbalance in initial soil and atmo-
spheric temperature and moisture without MCLDA, similar to
the ocean-atmosphere initialization shock studied by Mulholland
et al. (2015). The latent and sensible heat fluxes (LHF, SHF) for
1801 UTC (after a single 1-min time step) are presented in
Fig. 12, with larger latent heat fluxes in both experiments
over the eastern United States where soil moisture is gener-
ally higher, and larger sensible heat fluxes generally over the
western United States. Both flux estimates were affected by
recent precipitation over western Mexico and Arizona (south-
west monsoon) and the U.S. East Coast resulting in increased
LHF and decreased SHF. Differences (MCLDA minus
noMCLDA) are shown for LHF in Fig. 13a and for SHF in
Fig. 13b. In many of the LHF maximum areas (.400 W m22)
with apparent recent precipitation (e.g., OK, FL, east coast),
application of MCLDA increases LHF. For one of these points
in central PA, a time series of LHF for the first 20 time steps of
this model run (Fig. 13c) shows a sudden drop (shock) for the
noMCLDA experiment with an LHF decrease of ∼100 W m22

in the first time step. By contrast, with a more balanced initial
state in the MCLDA run, the first time step only shows a
decrease of ∼10 W m22, a much reduced shock. During the
forecast the two runs slowly grow closer at this point, reducing

FIG. 9. Forecast error for 2-m temperature (red) and 2-m dewpoint (blue) over eastern United
States for RAP model experiments with MCLDA (solid) and without MCLDA (dashed) for a
week (12–18 Feb 2019) within the winter test period. (a) RMS errors, and (b) the bias errors.
Vertical lines show the date of snapshots (16 Feb 2019) shown in Fig. 2 (0600 UTC) and Figs. 10
and 11 (1800 UTC).
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the difference in LHF from ∼100 W m22 at time step 2 to
∼50 Wm22 after 20 min of integration, but still the noMCLDA
experiment remains drier.

Sensible heat flux over this summer midday case after one
time step was generally lower with MCLDA (Fig. 12b vs
Fig. 12d, Fig. 13b), with somewhat less area with MCLDA
showing at least 300 W m22 in the western United States.

A point over northern California was selected for a time
series comparison (Fig. 13d), showing a very large SHF
shock of 400 W m22 at the first time step for the experiment
without MCLDA, but little perturbation with MCLDA.
Without MCLDA, a strong negative atmospheric tempera-
ture increment but without any change to the soil tempera-
ture had resulted in the spike in SHF. Overall, the primary

FIG. 10. Difference fields for MCLDA experiments (noMCLDA minus control with MCLDA) at 16 Feb 2019 1800
UTC. Differences are shown for (a) atmospheric 2-m dewpoint, (b) 2-m temperature, (c) soil volumetric moisture
content (m3 m23) at first level below surface (1-cm depth), and (d) soil temperature (also at 1 cm).

FIG. 11. The 2-m temperature analysis increments from (a) control with MCLDA and (b) noMCLDA experiments for
1800 UTC 16 Feb 2019.
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shocks without MCLDA shown in Figs. 13c and 13d last
only a single time step, far less than the 12-h initialization
shock for ocean shown by Mulholland et al. (2015). How-
ever, some difference in LHF and SHF at these grid points
continued through the first 20 time steps (and beyond). The
ongoing hourly assimilation in RAP, with cumulative minimiz-
ing of these hourly shocks via application of MCLDA, results in
the improvements in 2mT and 2mTd and lower-troposphere
temperature evident in Figs. 3–9.

7. Conclusions

Accurate land surface evolution is critical for determining
land–atmosphere fluxes of heat, moisture, and momentum,
which are in turn important for weather prediction on short-,
medium-, and longer-range time scales. Initialization of land
surface fields (soil and snow temperature, volumetric soil mois-
ture) faces limitations in soil observations: the sparseness and
very limited horizontal representativeness of in situ observa-
tions and the assumptions and resulting (potential) systematic
errors inherent in satellite retrievals of the land state despite
progress in new instruments. However, analysis increments in
the lower atmosphere can provide information on probable
errors in land surface fields within a frequently updating NWP
system. The MCLDA technique described here does not use in
situ or remotely sensed soil observations or full DA covarian-
ces, but instead relates near-surface atmospheric analysis incre-
ments to soil/snow analysis increments within an overall hourly

cycled data assimilation and forecast system. Its soil increments
are affected by all available atmospheric measurements (includ-
ing soundings, aircraft, satellites, and 2-m screen-level data),
while soil increments in ECMWF and UKMO are affected pri-
marily by 2-m measurements and soil-related satellite data. As
cited earlier, James and Benjamin (2017) showed a clear
improvement in 2-m temperature/moisture forecasts especially
in daytime from aircraft and other upper-air observations.

Varying levels of sophistication are possible for coupling land
surface and atmospheric data assimilation, ranging fromWCDA
(in which land surface and atmospheric analyses are carried out
separately) to SCDA (in which land surface and atmospheric
variables are updated in a unified DA system, with two-way cou-
pling and cross-variable covariances). The MCLDA method is
an intermediate approach, taking advantage of the inherent tight
coupling between soil/snow evolution and near-surface atmo-
spheric behavior in an NWP system with a continually cycled
land surface state. The MCLDA is one component of the larger
set of Earth system coupling used in NOAA’s rapidly updating
RAP and HRRRmodels (B16; D22; see Table 3 here).

The MCLDA described here is applied in the vertical to
soil and snow temperatures and volumetric soil moisture, and
also features a horizontal update to the extent of snow (and
ice) cover, with both building and trimming based on satellite-
derived daily snow and ice analyses. The MCLDA is applied
subject to a number of constraints intended to avoid unrealis-
tic land surface evolution. The land surface fields in the RAP
and HRRR models are allowed to evolve via continuous

FIG. 12. Latent and sensible heat fluxes valid at first time step (1 min) from RAP experiments with and without
MCLDA (only CONUS area shown). Valid at 1801 UTC 15 Aug 2019. (a),(c) Latent and (b),(d) sensible heat flux for
control with MCLDA and noMCLDA experiments, respectively.
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cycling driven by hourly assimilation applied from the obser-
vations shown in Table 4, with the MCLDA approach also
applied. The land surface fields for these models have been
evolving for many years via the model forecasts themselves in
combination with hourly data assimilation and MCLDA. First,
an earlier version of the MCLDA method was introduced in
the late 1990s on a coarser horizontal scale over CONUS in the
Rapid Update Cycle (Benjamin et al. 2004), then in 2011 this
evolved land surface state was grafted into the RAP, and since
2012, 3-km land surface variables initialized from the 13-km
RAP has been evolving independently in the HRRR. The
MCLDA approach has been critical for avoiding any significant
drift in soil temperature and moisture evolution over more than
two decades on 13- and 3-km resolutions.

In this paper, we demonstrate short-range forecast improve-
ments coming from the application of MCLDA within the
hourly 13-km RAP system (B16) compared to an experiment
without any land DA. Lower atmosphere observations (both
2-m and rawinsonde-based temperature and humidity) are sig-
nificantly improved for 6–12-h forecasts and sometimes out to
24 h when MCLDA is applied, most notably during winter
when errors in predicting location and amount of snowfall can
substantially affect modeled surface properties. The daily snow
and ice update based on IMS snow data leads to a more accu-
rate spatial distribution of snow cover, important for predicting
the evolution of the planetary boundary layer. Dawson et al.
(2016) showed an improved snow evolution from RAP (using
MCLDA) versus other NCEP models. The moderately coupled
DA described in this paper within the full atmosphere-soil-

snow state enables an initialization of the full atmosphere-soil-
snow state and thus avoids initial shock to surface-energy-
balance via ensuring accurate fluxes across atmospheric/land
(and snow) interface especially in initial forecast hours.

Overall, in this paper, we show the impact of coupled land–
snow data assimilation on short-range forecasts from the hourly
updated NOAA Rapid Refresh assimilation/modeling system
(B16). A coupled data assimilation is important for applications
of the short-range rapidly updating NWP, including severe
weather/convection, aviation, clouds, energy, precipitation, and
extreme cold conditions in winter. Erroneous surface fluxes
from strong nonequilibrium land–atmosphere contrasts in the
first few timesteps of the model can lead to short-range forecast
error for these applications.

Upcoming studies will show comparisons for RAP/HRRR
using MCLDA with in situ soil observations [similar to those by
Santanello et al. (2019) and Carrera et al. (2019)] and also with
PBL surface-energy flux observations. A strongly coupled DA
will be developed to initialize the soil, snow, and atmosphere
simultaneously. We plan to test the 36-member 3-km HRRR
data assimilation system (HRRRDAS; D22) ensemble to evalu-
ate prognostic land–atmosphere vertical covariances, as shown
by Lin and Pu (2020), to improve over the MCLDA technique
described here. The application of a carefully designed soil
parameter perturbation approach will likely be essential for
improving ensemble data assimilation and prediction [as demon-
strated by Jankov et al. (2017) and refined by Draper (2021)].
Assimilation of microwave indicators of soil moisture (SMAP,
SMOS, ASCAT) will be added following effective techniques

FIG. 13. More flux comparisons for RAP experiments from 15 Aug 2019 at 1801 UTC. Differences (noMCLDA
minus control-MCLDA) for (a) latent and (b) sensible heat flux. (c) Latent heat flux time series for each time step
comparison out to 20 min for MCLDA and noMCLDA experiments for a point in central PA [black dot in (a)]. (d)
Similarly, sensible heat flux time series (from 1800 to 1820 UTC) are shown for the same two experiments for a point
in northern California [black dot in (b)].
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described by de Rosnay et al. (2013), Muñoz-Sabater et al.
(2019), Bélair and Boone (2020), and others. This work will be
conducted under the coupled data assimilation effort for the
NOAAUnified Forecast System (UFS).
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